
Creating an Agile Hardware Design Flow

Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David Durst,
Kayvon Fatahalian, Kathleen Feng, Pat Hanrahan, Teguh Hofstee, Mark Horowitz, Dillon Huff, Fredrik Kjolstad,
Taeyoung Kong, Qiaoyi Liu, Makai Mann, Jackson Melchert, Ankita Nayak, Aina Niemetz, Gedeon Nyengele,

Priyanka Raina, Stephen Richardson, Raj Setaluri, Jeff Setter, Kavya Sreedhar, Maxwell Strange, James Thomas,
Christopher Torng, Leonard Truong, Nestan Tsiskaridze, Keyi Zhang

Stanford University
Email: praina@stanford.edu

Abstract—Although an agile approach is standard for software
design, how to properly adapt this method to hardware is still an
open question. This work addresses this question while building
a system on chip (SoC) with specialized accelerators. Rather than
using a traditional waterfall design flow, which starts by studying
the application to be accelerated, we begin by constructing a
complete flow from an application expressed in a high-level
domain-specific language (DSL), in our case Halide, to a generic
coarse-grained reconfigurable array (CGRA). As our under-
standing of the application grows, the CGRA design evolves,
and we have developed a suite of tools that tune application
code, the compiler, and the CGRA to increase the efficiency of
the resulting implementation. To meet our continued need to
update parts of the system while maintaining the end-to-end flow,
we have created DSL-based hardware generators that not only
provide the Verilog needed for the implementation of the CGRA,
but also create the collateral that the compiler/mapper/place
and route system needs to configure its operation. This work
provides a systematic approach for desiging and evolving high-
performance and energy-efficient hardware-software systems for
any application domain.

Index Terms—accelerator architectures, DSLs, compilers

I. INTRODUCTION

Digital design tools and methodology have improved dra-
matically, letting us create billion-plus-transistor SoCs with
accelerators we use every day. Unfortunately, completing
these designs (with software) takes many years, and costs
hundreds of millions of dollars [1]. Interestingly, a waterfall-
like approach, which starts by studying an application and
creating a hardware specification, and then continues by going
through a number of refinements, is still used for most
accelerator designs. The waterfall approach suffers from twin
issues of changing application requirements and incomplete
knowledge/understanding of the problem, making the resulting
system less useful than desired. To avoid these issues, we ex-
plore an agile end-to-end hardware/software design flow where
one incrementally updates hardware and software to generate
an accelerator. The resulting flow is shown in Figure 1, and
it can generate a customizable coarse-grained reconfigurable
array (CGRA), along with the software infrastructure for
mapping Halide [2] applications to the CGRA for execution.

This work is funded by DARPA’s Domain-Specific SoC (DSSoC) program
and Stanford’s Agile Hardware Center and SystemX Alliance.

Low-Level DSLs

Lake: Memory Generator

Canal: Interconnect Generator

PEak: PE Generator

Magma (HDL)Fault (HVL)

Software CompilerHigh-Level DSLs

CoreIR

CGRA Verilog

Rewrite
Rules

Routing
Graph

Lower

Map PE and
Memory

CPU
CodeHalide

CoreIR

Mapped CoreIR

CGRA
Place & Route

CGRA Bitstream

Halide ProgramCanal ProgramLake ProgramPEak Program

Fig. 1. End-to-end hardware generation and software compilation flow,
starting with programs written in PEak, Lake, Canal, and Halide.

Our approach leverages recent work on creating and using
hardware generators [3]–[6] to improve design productivity,
and builds upon prior work on building/using CGRAs [7]–
[10]. Like TVM [11] and HPVM [12], we are trying to
construct a system that can map applications to hardware.
Our flow has two main distinguishing features: (i) we utilize
programming languages’ semantics to address the problem of
maintaining consistency between all layers of the end-to-end
flow; and (ii) we create a modular system by using a number
of small languages that each target one domain of the overall
flow.

Any end-to-end flow is an integration of many layers of
software and hardware. By having templates/generators create
the layers in the flow, the parameters between the different
layers quickly become dependent on each other. For example,
if changing a parameter creates a new instruction in the
CGRA’s processing element (PE), the configuration for the
layer mapping applications to the CGRA also needs to change.

Our main contribution is recognizing that the integra-
tion problem is fundamentally about managing the compo-
sition of the end-to-end flow’s layers so that the cross-layer
constraints are always satisfied, enabling developers to
continuously compile and measure the applications on the
hardware. Unlike configuration files, languages’ semantics
are sufficiently expressive to communicate both configuration
values and how changes to those values impact other layers
in the system. Thus, we have created three DSLs—PEak for
PEs, Lake for memories, and Canal for interconnects—for

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

PE MEM PE

PE MEM PE

PE MEM PESy
st

em
 In

te
rc

on
ne

ct

G
lo

ba
l B

uf
fe

r

CPU

Instruction
Cache

Data
Cache

DMA
Engines

Lake
Memory Generator

Canal
Interconnect Generator

PEak
PE Generator

Fig. 2. Our island-style CGRA contains processing element (PE) and memory
(MEM) tiles communicating through an interconnect, generated from PEak,
Lake, and Canal DSLs.

specifying different parts of the CGRA as shown in Figure 1.
By writing our design configurations in these DSLs, we

obtain a single source of truth for each layer. These languages
have different “backends” that ensure different tools in the
flow have a consistent view of the design. For example, the
compiler of PEak, our DSL for processing elements, generates
RTL Verilog, a functional model, and the rewrite rules the
application compiler needs to map applications to it. Tying
these disparate operations together requires an understanding
of what programs mean, which our DSL approach provides.

II. CGRA HARDWARE AND COMPILER

Figure 2 shows the CGRA hardware that is generated by
our DSLs and targeted by the software compiler. The software
compiler, shown on the right in Figure 1, is divided into three
main steps; compiling a Halide application to a CoreIR graph,
mapping it to a graph of PE and MEM tiles, and performing
place and route (P&R) on the mapped graph.

CoreIR [13] is an LLVM-inspired hardware IR and compiler
framework and is leveraged by the RTL generation flow for
the CGRA, and independently by the Halide compiler as its
output target. CoreIR defines a standardized serializable graph-
format, semantically-precise bitvector and stateful operations
based on SMT-Lib [14], and a set of useful optimizations.

To create a flexible compiler framework for an ever-
changing CGRA specification, multiple parts of the compiler
need to be parameterized by the specification. PEak and Lake
provide the mapper with a set of rewrite rules. Canal provides
the P&R tool with tile and routing information.

A. Halide Compilation

Applications are written in Halide [2], a C++ embedded
DSL for image processing and machine learning applications,
that decouples scheduling from algorithms. As shown in
Figure 3, our compilation flow consists of two stages. First, we
extend the Halide scheduling primitives to specify what part
of the application will be accelerated as well as to define the
memory hierarchy and parallelism. Adding hardware schedul-
ing primitives enables us to explore data tiling and traversal
choices and to generate a configuration of the CGRA that
maximizes the overall energy-efficiency and performance.

Halide

output

input

output

output

input

input

Unmapped CoreIR

Mapped CoreIR

Application Mapping

Application Compilation

Shift Registers

SR SR

SR SR

SR SR

Fig. 3. Application compilation and mapping for a 3× 3 convolution.

This Halide language is then lowered to Halide’s internal
intermediate representation (Halide IR). In this representation,
computational kernels are represented by statements enclosed
in for-loops, and memory operations are represented by reads
and writes to unbounded, multi-dimensional arrays.

Next, the compiler lowers the application to the target
intermediate representation, CoreIR. It does this by translating
each compute statement into CoreIR’s bitvector primitives and
by performing a memory extraction pass to transform loop
nests into streaming memories called unified buffers. This
data-flow graph of unified buffer memories and computation
kernels is then passed to the mapper.

B. Application Mapping

Application mapping transforms the Halide-generated, un-
mapped CoreIR graph into a semantically equivalent mapped
CoreIR graph containing PE and MEM tiles. These PE and
MEM tiles are defined by the particular CGRA specification.
The transformations for computational kernels and unified
buffers into PE and MEM tiles are informed by the PEak and
Lake specifications respectively.

1) Memory Mapping: The unified buffer abstraction man-
ages the dataflow between application kernels. We transform
the loop control flow and data flow into an access pattern
by mapping an n-dimensional loop to an n-dimensional ad-
dress space. Memory mapping uses polyhedral analysis-based
rewrite rules to take the unified buffers in the application and
recursively break them into simpler unified buffers that can
be mapped to the CGRA MEM tiles. Section III-B2 provides
more details about memory rewrite rules.

2) Kernel Mapping: Kernel mapping produces a graph
of PEs that minimizes a cost metric, typically total area or
energy. Mapping is done in two phases: CGRA-independent
optimizations and CGRA-dependent instruction selection. The

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

first phase performs common optimizations including constant
folding, common sub-expression elimination, and dead code
elimination. The second phase performs instruction selection
using rewrite rules that specify how to map CoreIR patterns
to configured PE tiles. The PEak compiler generates these
rewrite rules automatically from the PE specification (see Sec-
tion III-A). Given these rules and a cost metric, the instruction
selector finds a complete cover of the CoreIR graph with the
rewrite rules that minimize the total cost.

C. Application Placement and Routing

Finally, we place and route the mapped CoreIR graph onto
the CGRA. We first partition the input graph into multiple
computation kernels where each kernel represents a densely
connected graph component. Global placement places these
kernels on the CGRA using an analytic solver. Detailed
placement inside each kernel optimizes the placement result.
Routing is done through an iterative algorithm which resolves
resource overuse while optimizing for metrics such as delay.
The routing result is used to generate the configuration bit-
stream for the CGRA. These steps require the routing graph
corresponding to the CGRA, as well as information on how
to set configuration registers to implement the routing. Canal
provides this information, as described in Section III-C3.

III. DOMAIN-SPECIFIC LANGUAGES FOR CGRA
HARDWARE GENERATION

We use three DSLs to specify our CGRA. A specification
written in these DSLs is the single source of truth for different
systems that interpret it to generate the hardware, rewrite rules
for mapping to the hardware, and other collateral. Using these
DSLs, a change in the design of any component automatically
propagates through the flow to affect dependent components
without manual intervention.

A. PEak: Processing Element Generator

PEak is an embedded Python DSL for specifying PEs
inspired by Bell and Newell’s ISP notation for describing
computer structures [15]. A PEak specification defines an in-
struction set (ISA), declares state, and describes the semantics
of each instruction as a function from inputs and current state
to outputs and next state. Figure 4 shows the multiple interpre-
tations of a single PEak specification. The PEak compiler uses
magma [4] to generate hardware and SMT [14] to generate
mapper rewrite rules from the specification. It is executable
in Python, so it also serves as a functional model of the PE
hardware. The interface of the specification is tested to ensure
consistency between the functional model and the hardware.

1) PEak Specification: PEak applies multiple interpreta-
tions [16] to the PE specification through the use of an
abstract type system. Each PEak sub-component (functional
model, hardware generator, and rewrite rule generator) pro-
vides a separate concrete implementation of the language’s
primitive abstract types. For example, PEak defines an abstract
BitVector type that supports the & operator. Evaluating the
expression a & b with the implementation of BitVector

PEak
Specification

Functional
Model

Serves as

Hardware
RTL Verilog

Generates
Using magma

Rewrite Rules
for Mapper

Generates
Using SMT

Tests

Single Source of Truth

Fig. 4. From a specification of a PE, PEak automatically generates its
functional model, hardware description, and rewrite rules for the mapper.

as an executable Python type performs a functional simulation.
Using magma’s Bits type constructs a circuit. Using the
SMTBitVector type, constructs an SMT formula.

PEak provides the primitive abstract types Bit and
BitVector (signed and unsigned). To aid formal analysis,
the semantics of Bit and BitVector are consistent with
SMT-lib [14]. PEak also provides enums and algebraic data
types (sum/tagged union and product/struct types) to aid the
specification of ISAs.

The example code in Figure 5 and Figure 7 defines the
ISA and functional specification1 of a simple PE. Separating
the encoding of the ISA from the functional specification
lets designers easily modify the instruction decode logic
without modifying the functional specification, and forces
type-safe interaction with instructions. Since Opcode is
not a BitVector, a direct comparison of inst.op to a
BitVector will cause an error. Instead, the user must refer
to a member of the Opcode Enum.

In the functional specification, __init__ defines sub-
components and state like registers and memories (including
pipeline registers). The example PE has two sub-components, a
Data and a Bit register. The __call__ method defines the
semantics of each PE instruction by determining the desired
behavior of each inst. Both the ISA and the functional
specification can be tested using Python execution.

2) Generating PE Hardware: PEak relies on magma [4], a
Python-embedded hardware construction language, to compile
specifications to RTL Verilog. PEak’s syntax extends magma’s
sequential circuit syntax with rich types that describe
ISAs using magma’s type protocol. magma’s type protocol lets
new types be defined by implementing an interface that allows
magma to interpret the new type as if it were one of magma’s
built-in primitive types. For example, PEak’s sum type pro-
vides a syntax that forces type-safe interaction with variants.
The implementation of the type protocol allows magma to
interpret sum type values as magma Bits. This allows sum
types to provide syntax-level constraints while reusing the
semantics of BitVector for the hardware implementation.

Lowering a PEak specification to magma is a straight-
forward process that captures the functional intent of the
designer. The __call__ method simply defines the state
machine transition function that is executed on every positive
edge of the clock. The PEak language encourages high-level

1We distinguish the functional specification (the function of a PE [15]) from
the functional model (a software executable model of a hardware component).

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

class Opcode(Enum):
Add = 0
And = 1

class Instruction(
Product):

op = Opcode
invert_A = Bit
scale_B = Bit
reg_out = Bit

Data is BitVector
Data = Unsigned[16]

Fig. 5. PE ISA specification.

pe = PE()
inst = Instruction(
Opcode.Add,
Bit(0), # invert_A
Bit(1), # scale_B
Bit(0)) # reg_out

out, flag = pe(
inst,
Data(2), # A
Data(3), # B
Data(5), # C
Bit(0)) # c_in

assert out==Data(17)
assert flag==Bit(0)

Fig. 6. PE python execution.

class PE(Peak):
def __init__(self):
self.o_reg = Register(Data)
self.f_reg = Register(Bit)

def __call__(self,
inst: Instruction,
A: Data,
B: Data,
C: Data,
c_in: Bit
) -> (Data, Bit):

if inst.invert_A:
A = ˜A

if inst.scale_B:
B = B*C

if inst.op == Opcode.Add:
adc = add with carry
res, flag = A.adc(B, c_in

)
else: # inst.op == Opcode.
And
res = A & B
flag = (res == 0)

if inst.reg_out:
res = self.o_reg(res)
flag = self.f_reg(flag)

return res, flag

Fig. 7. PE functional specification.

specifications that eschew low-level details such as resource
sharing, clock gating, and data gating. Instead of requiring that
these details be captured at the PEak level, these concerns are
addressed by optimization passes in the compiler tool-chain.
magma’s compiler intermediate representation (CoreIR [13])
is based on SMT [14] which enables formal equivalence
checking of the input/output pairs of each pass.

The fault [17] Python package is used to test magma
circuits with the function call syntax in Figure 6. By wrapping
the generated magma circuit in a fault tester object, de-
signers directly reuse functional model tests for the hardware
description, and fault generates a test bench that verifies the
magma circuit using a hardware simulator such as Verilator.

3) Generating Rewrite Rules for Kernel Mapping: Mapping
CoreIR graphs requires rewrite rules that specify how particu-
lar CoreIR patterns map to PEs. To generate rewrite rules, the
__call__ method is transformed into a normal form where
each name is assigned to once, there is a single return at the
end of the function, sub-components are called once, and all
if blocks are transformed into ternary expressions. Once in
this form, applying __call__ to abstract SMT variables (in
the same way they are applied to concrete python variables in
Figure 6) produces a symbolic execution of the circuit. This
symbolic execution can be used to generate rewrite rules from
a CoreIR IR node using a quantified SMT query:

∃inst ∀inputs : IRNode(inputs) == PE(inst, inputs)

If the SMT solver finds an inst, we have a rewrite rule
between IRNode and inst. If the SMT solver does not find
a rewrite, we know that none exists.

Further, a similar technique can be used to ensure optimiza-
tions do not change the behavior of a design. For example,

CoreIR.Sub PE

Instruction (
op = Add,
invert_A = True,
…

)

In0 In1

Out res flag

c_in A B C1

Fig. 8. An example rewrite rule for kernel mapping that maps CoreIR subtract
to the simple PE from Figure 7.

suppose a rewrite rule has been discovered between IRNode
and inst for PE. An optimized PE OPE can be verified with:

∀inputs : IRNode(inputs) == OPE(inst, inputs)

B. Lake: Memory Generator

While PEak starts with a high-level specification of a PE,
Lake starts with a low-level hardware-centric specification of
a memory module to make it easy for hardware designers
to perform design space exploration. From this specification,
Lake creates the technology-dependent RTL Verilog, a high-
level specification of this hardware that can be used in a
polyhedral rewrite system, and a mechanism to set the config-
uration registers from the rewrite system output.

1) Lake Hardware Specification: Lake memory modules
contain one or more memory units, blocks that select or com-
bine inputs to create an output, and a graph interconnecting
these units to each other and the ports. Figure 9 shows an
example memory module with three memory units. For each
memory unit, the rewrite system needs to know the memory
capacity, number of ports, port width, and the read/write
delay, all of which are easily extracted from the hardware
specification. It also needs to understand the capability of
the address generators. Our system currently supports nested
affine loops (with the user specifying the number of loops
and constraints on the loop values), with the innermost loop
as a normal loop or a vector of addresses (user specifies max
length). The latter allows our system to support some non-
affine address patterns.

This system makes it easy both to express an efficient
memory (like using a wide fetch memory to emulate a multi-
ported memory) and to extract its specification for the rewrite
system. Figure 9 shows the hardware needed to utilize a wide
memory: a small memory to aggregate data before writing to
the wide memory and another small memory to re-order and
serialize the output data after reading from the wide memory.
By passing each units’s parameters to the rewrite system,
Lake does not need to explicitly compute the access patterns
supported by the overall memory module. The rewrite system
leverages polyhedral analysis to analyze the address pattern
using the parameters for each memory unit separately.

The designer also specifies how units and ports are intercon-
nected as well as functions that combine multiple inputs into a
single output. These mux-like functions can be used to bypass
unused internal units or bundle extra ports from multiple Lake

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

Storage
Buffer
(SRAM)

Addr
Gen

Aggregation
Buffer: Serial In

- Parallel Out

Addr
Gen

Addr
Gen

Addr
Gen

Transpose
Buffer: Parallel In

- Serial Out

Addr
Gen

Addr
Gen

ch
ai

n
_
in

Fig. 9. Example Lake memory module with three memory units.

memory modules to form a memory with larger capacity or
bandwidth without using additional hardware. For example,
our current design has an extra data input port, an output port,
and a mux in the hardware for the rewrite system to chain
Lake modules together to double the memory capacity.

2) Generating Rewrite Rules for Memory Mapping: The
memory rewrite rules map each unified buffer required
by the application to hardware memory modules generated
from Lake. There are two types of rewrite rules: hardware-
independent and hardware-dependent. Hardware-independent
rewrite rules use polyhedral analysis on the access patterns
of the unified buffer to determine data reuse. This reduces
the bandwidth/capacity of the buffer. For example, memory
bandwidth can be reduced by inserting registers if the data
is fetched multiple times, while capacity can be reduced if
we overwrite the data after it becomes obsolete. Figure 10(a)
shows this rewrite for a fully unrolled 1D convolution with
window size of 3. While the application-level unified buffer
specifies a memory the size of the image with three output
ports (since the downstream kernel needs to read three pixels
in parallel), it can be rewritten into two shift registers by
analyzing the reuse pattern in the memory accesses.

The hardware-dependent rewrite rules transform abstract
memories into concrete hardware memory modules using
the parameters extracted from the Lake specification (Sec-
tion III-B1). If the application-level unified buffer needs more
bandwidth or capacity than what is available in a memory tile,
the compiler uses memory banking or chaining, respectively,
as shown Figure 10(b) and (c). Since hardware memories may
have a wider fetch width, we also include a vectorization
rewrite rule to map to them as shown in Figure 10(d).

Since the rewrite system works on extracted memory spec-
ifications, it has the specification for each address generator.
However, it does not know how to configure the hardware
to implement that specification as it has no knowledge of the
actual hardware. To determine this configuration state, we first
extract a formal model of the address generation logic from the
Verilog RTL. Using this model and the knowledge of which
bits are the configuration state, we then use an SMT solver to
find a setting of configuration bits that generates the required
address pattern for that generator, similar to PEak.2

C. Canal: Interconnect Generator

Canal takes a set of (potentially heterogeneous) PE and
memory cores and a specification of the interconnection net-
work. It then generates the hardware (with the cores snapped

2We have a working prototype of this system and are manually mapping
some configurations. We expect the full system to be operational in 6 months.

(a) Reuse analysis
Reduces memory

bandwidth, capacity

(b) Banking
Increases
bandwidth

(c) Chaining
Increases
capacity

(d) Vectorization
Matches interface

width

Fig. 10. Memory mapping rewrite rule examples: (a) is hardware-independent,
while (b), (c) and (d) are hardware-dependent rewrite rules.

Hardware RTL Verilog

Configuration Bitstream

Routing Graph for P&R

PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con�guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

Canal Specification

PE/MEM Core
Designer

Interconnect
Designer

Generates

Generates

Generates
PEPE

PE/MEM Core
Designer

PEPEPEPE

PEPE

PEPE

PEPE

SB

SB

SB

SB

SB

SB

SB

SB

SB

Interconnect
Generator

FF000101 00AF000B

00000101 0000000C

00000201 0000000A

FF0000201 00AF00C

Bitstream
Con�guration

Verilog/RTLApplication
PnR

Interconnect
Designer

parameters
passes

Physical Design
PnR

Fig. 11. Canal is a single source of truth for generating hardware, place-
and-route collateral, the configuration bitstream, and a functional model (not
shown).

into the network at designer-specified locations), the routing
graph that place-and-route tools need to map the dataflow
graph onto the generated hardware, the configuration bitstream
that implements the routing result on the hardware, and a func-
tional model (Figure 11). It allows designers to easily explore
interconnect parameters like network topology, placement of
pipeline registers, and switchbox design.

1) Canal Specification: A Canal program is a directed
graph that abstractly represents the structure of the intercon-
nect. Vertices are terminals, and directed edges are wired
connections. Vertices can have multiple incoming edges, which
abstracts away low-level multiplexers. Each vertex can be
annotated with attributes. A coordinate attribute enables rein-
terpreting the graph on a grid-based layout, and a type attribute
marks a vertex as a tile port or a pipeline register.

Using an abstract graph-based DSL has several advantages
over a simple hardware generator with parameters. A graph
allows staged generation (e.g. use passes to insert pipeline
registers). Different standard interconnect topologies can easily
be imported and modified.

2) Generating Interconnect Hardware: We generate the
RTL description automatically by following several rules:
1) Every edge is a directed wire connection; 2) Vertices
with more than one incoming edge generate multiplexers;
3) Multiplexer select bits follow the incoming edge ordering;
4) Vertices with attributes for special hardware types (e.g. a
pipeline register) generate that hardware. Canal also verifies
structural correctness by comparing the connectivity of the
generated hardware (extracted from the RTL) with the original
abstract graph using standard graph isomorphism algorithms.

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

3x3 Conv Harris Multichannel Conv

-31.5% -0.7%

-1.03%

-10.2%

-1.90%

Fig. 12. Energy/op of three different CGRAs (PE with an integer ALU,
integer ALU + MAC, and MAC only) and an FPGA in the same technology.

3) Generating Routing Graph for Place-and-Route: Canal
mechanically transforms the abstract graph into a routing
graph required by the P&R tools to map the application
dataflow graph onto precisely this instance of generated
hardware. It also verifies the structural connectivity of the
transformation against the original abstract graph, and includes
timing-related information (e.g. wire delays) in the routing
graph for timing-driven P&R.

4) Generating Configuration Bitstream: The output of the
place-and-route tool is a routing result that describes which
connections must be made (in the reconfigurable interconnect)
in order to implement the application dataflow graph. Canal
takes the routing result and generates a configuration bitstream
that creates these connections on the generated hardware.

IV. RESULTS

Using our DSLs, we created Garnet, the latest iteration of
our CGRA SoC, with a 32×16 array of PE and memory tiles,
a second level memory called global buffer and an ARM
Cortex M3 processor (Figure 2). Each PE tile has a 16-bit,
two-input, fixed point ALU, and some registers. Each memory
tile contains 2 KB of SRAM and flexible address generators.
An interconnect with five 16-bit tracks and five 1-bit tracks
connects the tiles.

To show the flexibility of our design flow, we generate
three versions of the 32×16 CGRA and use our software
compiler to map 3×3 convolution, Harris corner detector, and
a neural network layer (multichannel convolution) onto the
different CGRAs. In the first version, the PE on the CGRA
has a 16-bit, two-input, integer ALU. In the second version,
the ALU has an additional, specialized multiply-accumulate
(MAC) instruction. The third version is most specialized and
only has a MAC unit. The CGRAs are synthesized, placed,
and routed in TSMC 16nm technology and run at 200 MHz.

Figure 12 shows the energy/op consumed by each version
of the CGRA. We compare the CGRAs with the FPGA on the
Xilinx ZCU102 development board programmed with Vivado
2017.2 toolchain, which is in the same TSMC 16nm tech-
nology. Adding a specific MAC instruction to the PE reduces
energy because fewer PEs are needed to execute convolutions,
resulting in less inter-tile communication. Specializing the PE
to have only a MAC instruction further reduces energy at the
cost of configurability (this version can no longer run Harris).
The CGRA consumes 6.92× to 25.3× less energy than the
FPGA.

V. CONCLUSION

To facilitate agile hardware design, we need tools to main-
tain the end-to-end flow. This requires hardware generators,
clean interfaces, and methods to communicate changing design
features without a designer’s manual intervention. Our frame-
work and associated DSLs address these concerns by allowing
the designer to separately deal with different concerns, and
by seamlessly communicating changing design capability to
all the layers in our flow. The result is an approach to agile
hardware design that enables rapid integration of changing
components and shorter design cycles.

REFERENCES

[1] E. Sperling, “How Much Will That Chip Cost?.” semiengineering.com/
how-much-will-that-chip-cost/, March 2014. [Online].

[2] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” SIGPLAN
Not., vol. 48, pp. 519–530, June 2013.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
pp. 1212–1221, 2012.

[4] P. Hanrahan, “Magma github.” https://github.com/phanrahan/magma/.
[5] K. Jaic and M. C. Smith, “Enhancing hardware design flows with my-

hdl,” in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’15, (New York, NY, USA),
p. 28–31, Association for Computing Machinery, 2015.

[6] S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: Closing the performance
gap in productive hardware development frameworks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, 2018.

[7] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications, pp. 61–70, Springer, 2003.

[8] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-
alingam, and C. Kim, “Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38–51, 2012.

[9] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE International
Symposium on Computer Architecture (ISCA), pp. 389–402, 2017.

[10] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for imaging
and vision applications,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1–13, IEEE, 2016.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: An
automated end-to-end optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation,
(Carlsbad, CA), pp. 578–594, USENIX Association, Oct. 2018.

[12] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve,
and S. Adve, “Hpvm: Heterogeneous parallel virtual machine,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’18, (New York, NY, USA),
p. 68–80, Association for Computing Machinery, 2018.

[13] R. Daly and L. Truong, “Invoking and linking generators from multiple
hardware languages using coreir,” 2018.

[14] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB).” www.SMT-LIB.org, 2016.

[15] C. G. Bell and A. Newell, “The pms and isp descriptive systems for
computer structures,” in Proceedings of the May 5-7, 1970, spring joint
computer conference, pp. 351–374, 1970.

[16] J. O’Donnell, “Hydra: hardware description in a functional language
using recursion equations and high order combining forms,” The Fusion
of Hardware Design and Verification, pp. 309–328, 1988.

[17] L. Truong, “fault.” https://github.com/leonardt/fault, 2020.

Authorized licensed use limited to: Stanford University. Downloaded on October 27,2020 at 20:03:35 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

